Representation of sparse Legendre expansions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representation of sparse Legendre expansions

We derive a new deterministic algorithm for the computation of a sparse Legendre expansion f of degree N with M N nonzero terms from only 2M function resp. derivative values f (1), j = 0, . . . , 2M − 1 of this expansion. For this purpose we apply a special annihilating filter method that allows us to separate the computation of the indices of the active Legendre basis polynomials and the evalu...

متن کامل

Reconstruction of sparse Legendre and Gegenbauer expansions

Recently the reconstruction of sparse trigonometric polynomials has attained much attention. There exist recovery methods based on random sampling related to compressed sensing (see e.g. [17, 10, 5, 4] and the references therein) and methods based on deterministic sampling related to Prony–like methods (see e.g. [15] and the references therein). Both methods are already generalized to other pol...

متن کامل

Sparse Legendre expansions via l1-minimization

We consider the problem of recovering polynomials that are sparse with respect to the basis of Legendre polynomials from a small number of random samples. In particular, we show that a Legendre s-sparse polynomial of maximal degree N can be recovered fromm s log(N) random samples that are chosen independently according to the Chebyshev probability measure dν(x) = π−1(1 − x2)−1/2dx. As an effici...

متن کامل

Optimized signal expansions for sparse representation

Traditional signal decompositions such as transforms, filterbanks, and wavelets generate signal expansions using the analysis–synthesis setting: The expansion coefficients are found by taking the inner product of the signal with the corresponding analysis vector. In this paper, we try to free ourselves from the analysis–synthesis paradigm by concentrating on the synthesis or reconstruction part...

متن کامل

Holomorphic Extension Associated with Fourier–legendre Expansions

In this article we prove that if the coefficients of a Fourier–Legendre expansion satisfy a suitable Hausdorff–type condition, then the series converges to a function which admits a holomorphic extension to a cut–plane. Furthermore, we prove that a Laplace–type (Laplace composed with Radon) transform of the function describing the jump across the cut is the unique Carlsonian interpolation of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 2013

ISSN: 0747-7171

DOI: 10.1016/j.jsc.2012.06.002